Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 291
Filtrar
1.
Cancer Immunol Res ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573707

RESUMO

Identification of immunogenic cancer neoantigens as targets for therapy is challenging. Here, we integrate cancer whole genome and long-read transcript sequencing to identify the collection of novel open reading frame peptides (NOPs) expressed in tumors, termed the framome. NOPs represent tumor-specific peptides that are different from wild-type proteins and may be strongly immunogenic. We describe an uncharacterized class of hidden NOPs, which derive from structural genomic variants involving an upstream protein coding gene driving expression and translation of non-coding regions of the genome downstream of a rearrangement breakpoint. NOPs represent a vast amount of possible neoantigens particularly in tumors with many (complex) structural genomic variants and a low number of missense mutations. We show that NOPs are immunogenic and epitopes derived from NOPs can bind to MHC class I molecules. Finally, we provide evidence for the presence of memory T-cells specific for hidden NOPs in lung cancer patient peripheral blood.

2.
Lung ; 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642135

RESUMO

BACKGROUND: Lung fibrosis is a chronic lung disease with a high mortality rate with only two approved drugs (pirfenidone and nintedanib) to attenuate its progression. To date, there are no reliable biomarkers to assess fibrosis development and/or treatment effects for these two drugs. Osteoprotegerin (OPG) is used as a serum marker to diagnose liver fibrosis and we have previously shown it associates with lung fibrosis as well. METHODS: Here we used murine and human precision-cut lung slices to investigate the regulation of OPG in lung tissue to elucidate whether it tracks with (early) fibrosis development and responds to antifibrotic treatment to assess its potential use as a biomarker. RESULTS: OPG mRNA expression in murine lung slices was higher after treatment with profibrotic cytokines TGFß1 or IL13, and closely correlated with Fn and PAI1 mRNA expression. More OPG protein was released from fibrotic human lung slices than from the control human slices and from TGFß1 and IL13-stimulated murine lung slices compared to control murine slices. This OPG release was inhibited when murine slices were treated with pirfenidone or nintedanib. OPG release from human fibrotic lung slices was inhibited by pirfenidone treatment. CONCLUSION: OPG can already be detected during the early stages of fibrosis development and responds, both in early- and late-stage fibrosis, to treatment with antifibrotic drugs currently on the market for lung fibrosis. Therefore, OPG should be further investigated as a potential biomarker for lung fibrosis and a potential surrogate marker for treatment effect.

3.
Lancet Reg Health Eur ; 38: 100838, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38476742

RESUMO

In the past two decades, the treatment of metastatic non-small cell lung cancer (NSCLC), has undergone significant changes due to the introduction of targeted therapies and immunotherapy. These advancements have led to the need for predictive molecular tests to identify patients eligible for targeted therapy. This review provides an overview of the development and current application of targeted therapies and predictive biomarker testing in European patients with advanced stage NSCLC. Using data from eleven European countries, we conclude that recommendations for predictive testing are incorporated in national guidelines across Europe, although there are differences in their comprehensiveness. Moreover, the availability of recently EMA-approved targeted therapies varies between European countries. Unfortunately, routine assessment of national/regional molecular testing rates is limited. As a result, it remains uncertain which proportion of patients with metastatic NSCLC in Europe receive adequate predictive biomarker testing. Lastly, Molecular Tumor Boards (MTBs) for discussion of molecular test results are widely implemented, but national guidelines for their composition and functioning are lacking. The establishment of MTB guidelines can provide a framework for interpreting rare or complex mutations, facilitating appropriate treatment decision-making, and ensuring quality control.

4.
Lancet Reg Health Eur ; 38: 100839, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38476751

RESUMO

For patients with advanced stage non-small cell lung cancer (NSCLC), treatment strategies have changed significantly due to the introduction of targeted therapies and immunotherapy. In the last few years, we have seen an explosive growth of newly introduced targeted therapies in oncology and this development is expected to continue in the future. Besides primary targetable aberrations, emerging diagnostic biomarkers also include relevant co-occurring mutations and resistance mechanisms involved in disease progression, that have impact on optimal treatment management. To accommodate testing of pending biomarkers, it is necessary to establish routine large-panel next-generation sequencing (NGS) for all patients with advanced stage NSCLC. For cost-effectiveness and accessibility, it is recommended to implement predictive molecular testing using large-panel NGS in a dedicated, centralized expert laboratory within a regional oncology network. The central molecular testing center should host a regional Molecular Tumor Board and function as a hub for interpretation of rare and complex testing results and clinical decision-making.

5.
Int J Mol Sci ; 25(4)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38397090

RESUMO

Volatile anesthetics have been shown in different studies to reduce ischemia reperfusion injury (IRI). Ex vivo lung perfusion (EVLP) facilitates graft evaluation, extends preservation time and potentially enables injury repair and improvement of lung quality. We hypothesized that ventilating lungs with sevoflurane during EVLP would reduce lung injury and improve lung function. We performed a pilot study to test this hypothesis in a slaughterhouse sheep DCD model. Lungs were harvested, flushed and stored on ice for 3 h, after which EVLP was performed for 4 h. Lungs were ventilated with either an FiO2 of 0.4 (EVLP, n = 5) or FiO2 of 0.4 plus sevoflurane at a 2% end-tidal concentration (Cet) (S-EVLP, n = 5). Perfusate, tissue samples and functional measurements were collected and analyzed. A steady state of the target Cet sevoflurane was reached with measurable concentrations in perfusate. Lungs in the S-EVLP group showed significantly better dynamic lung compliance than those in the EVLP group (p = 0.003). Oxygenation capacity was not different in treated lungs for delta partial oxygen pressure (PO2; +3.8 (-4.9/11.1) vs. -11.7 (-12.0/-3.2) kPa, p = 0.151), but there was a trend of a better PO2/FiO2 ratio (p = 0.054). Perfusate ASAT levels in S-EVLP were significantly reduced compared to the control group (198.1 ± 93.66 vs. 223.9 ± 105.7 IU/L, p = 0.02). We conclude that ventilating lungs with sevoflurane during EVLP is feasible and could be useful to improve graft function.


Assuntos
Transplante de Pulmão , Animais , Ovinos , Sevoflurano/farmacologia , Estudos de Viabilidade , Projetos Piloto , Preservação de Órgãos , Pulmão , Perfusão
6.
Acta Biomater ; 177: 118-131, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38350556

RESUMO

Idiopathic pulmonary fibrosis (IPF), for which effective treatments are limited, results in excessive and disorganized deposition of aberrant extracellular matrix (ECM). An altered ECM microenvironment is postulated to contribute to disease progression through inducing profibrotic behavior of lung fibroblasts, the main producers and regulators of ECM. Here, we examined this hypothesis in a 3D in vitro model system by growing primary human lung fibroblasts in ECM-derived hydrogels from non-fibrotic (control) or IPF lung tissue. Using this model, we compared how control and IPF lung-derived fibroblasts responded in control and fibrotic microenvironments in a combinatorial manner. Culture of fibroblasts in fibrotic hydrogels did not alter in the overall amount of collagen or glycosaminoglycans but did cause a drastic change in fiber organization compared to culture in control hydrogels. High-density collagen percentage was increased by control fibroblasts in IPF hydrogels at day 7, but decreased at day 14. In contrast, IPF fibroblasts only decreased the high-density collagen percentage at day 14, which was accompanied by enhanced fiber alignment in IPF hydrogels. Similarly, stiffness of fibrotic hydrogels was increased only by control fibroblasts by day 14 while those of control hydrogels were not altered by fibroblasts. These data highlight how the ECM-remodeling responses of fibroblasts are influenced by the origin of both the cells and the ECM. Moreover, by showing how the 3D microenvironment plays a crucial role in directing cells, our study paves the way in guiding future investigations examining fibrotic processes with respect to ECM remodeling responses of fibroblasts. STATEMENT OF SIGNIFICANCE: In this study, we investigated the influence of the altered extracellular matrix (ECM) in Idiopathic Pulmonary Fibrosis (IPF), using a 3D in vitro model system composed of ECM-derived hydrogels from both IPF and control lungs, seeded with human IPF and control lung fibroblasts. While our results indicated that fibrotic microenvironment did not change the overall collagen or glycosaminoglycan content, it resulted in a dramatically alteration of fiber organization and mechanical properties. Control fibroblasts responded differently from IPF fibroblasts, highlighting the unique instructive role of the fibrotic ECM and the interplay with fibroblast origin. These results underscore the importance of 3D microenvironments in guiding pro-fibrotic responses, offering potential insights for future IPF therapies as well as other fibrotic diseases and cancer.


Assuntos
Matriz Extracelular , Fibrose Pulmonar Idiopática , Humanos , Fibrose Pulmonar Idiopática/patologia , Pulmão/patologia , Fibrose , Colágeno , Fibroblastos/patologia , Hidrogéis/farmacologia
8.
Artigo em Inglês | MEDLINE | ID: mdl-38315810

RESUMO

The role of alternative splicing in Chronic Obstructive Pulmonary Disease (COPD) is still largely unknown. We aimed to investigate the differences in alternatively splicing events between patients with mild-to-moderate and severe COPD compared to non-COPD controls and to identify splicing factors associated with aberrant alternative splicing in COPD. For this purpose, we performed genome-wide RNA-seq analysis of bronchial brushings from 23 mild-to-moderate, 121 severe COPD patients, and 23 non-COPD controls. We found a significant difference in the frequency of alternative splicing events in mild-to-moderate and severe COPD compared to non-COPD controls. There were from 2x to 8x (depending on event type) more differential alternative splicing events in the severe than in the mild-to-moderate stage. The samples from severe COPD patients showed less intron retention and more exon skipping. Interestingly, the transcript levels of the top 10 differentially expressed splicing factors were significantly correlated with the percentage of many alternatively spliced transcripts in severe COPD. The aberrant alternative splicing in severe COPD was predicted to increase the overall protein-coding capacity of gene products. In conclusion, we observed large and significant differences in alternative splicing between bronchial samples of COPD and control individuals, with more events observed in severe than in mild-to-moderate COPD. The changes in the expression of several splicing factors correlated with prevalence of alternative splicing in severe COPD. Alternative splicing can indirectly impact gene expression by changing the relative abundance of protein-coding isoforms potentially influencing pathophysiological changes. The presented results provide a better understanding of COPD-related alternative splicing changes.

10.
Am J Physiol Cell Physiol ; 326(1): C177-C193, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37955339

RESUMO

Fibroblasts are the main producers of extracellular matrix (ECM) responsible for ECM maintenance and repair, a process often disrupted in chronic lung diseases. The accompanying mechanical changes adversely affect resident cells and overall lung function. Numerous models have been used to elucidate fibroblast behavior that are now evolving toward complex three-dimensional (3-D) models incorporating ECM, aiming to replicate the cells' native environment. Little is known about the cellular changes that occur when moving from two-dimensional (2-D) to 3-D cell culture. This study compared the gene expression profiles of primary human lung fibroblasts from seven subjects with normal lung function, that were cultured for 24 h on 2-D collagen I-coated tissue culture plastic and in 3-D collagen I hydrogels, which are commonly used to mimic ECM in various models, from contraction assays to intricate organ-on-a-chip models. Comparing 3-D with 2-D cell culture, 6,771 differentially expressed genes (2,896 up, 3,875 down) were found; enriched gene sets within the downregulated genes, identified through Gene Set Enrichment Analysis and Ingenuity Pathway Analysis, were involved in the initiation of DNA replication which implied downregulation of fibroblast proliferation in 3-D. Observation of cells for 72 h in 2-D and 3-D environments confirmed the reduced progression through the cell cycle in 3-D. A focused analysis, examining the Hippo pathway and ECM-associated genes, showed differential patterns of gene expression in the 3-D versus 2-D culture. Altogether, the transcriptional response of fibroblasts cultured in 3-D indicated inhibition of proliferation, and alterations in Hippo and ECM pathways indicating a complete switch from proliferation to ECM remodeling.NEW & NOTEWORTHY With the introduction of complex three-dimensional (3-D) lung models, comes a need for understanding cellular behavior in these models. We compared gene expression profiles of human lung fibroblasts grown on two-dimensional (2-D) collagen I-coated surfaces with those in 3-D collagen I hydrogels. RNA sequencing and subsequent pathway analyses showed decreased proliferation, increased extracellular matrix (ECM) remodeling, and altered Hippo signaling and ECM deposition-related gene signatures. These findings highlight unique responses of fibroblasts in 3-D models.


Assuntos
Matriz Extracelular , Pulmão , Humanos , Matriz Extracelular/metabolismo , Pulmão/metabolismo , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Células Cultivadas , Fibroblastos/metabolismo , Hidrogéis/metabolismo
11.
EBioMedicine ; 98: 104883, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37995465

RESUMO

BACKGROUND: Systemic sclerosis-interstitial lung disease (SSc-ILD) is the leading cause of death in patients with SSc. There is an unmet need for predictive biomarkers to identify patients with SSc at risk of ILD. Previous studies have shown that interferon (IFN) pathways may play a role in SSc. We assessed the use of C-X-C motif chemokine ligand 10 (CXCL10) as a predictive biomarker for new onset of ILD in patients with SSc. METHODS: One-hundred-sixty-five (Female, N = 130) patients with SSc (SSc-ILD, N = 41) and 13 (Female, N = 8) healthy controls were investigated retrospectively. CXCL10 protein levels were measured by ELISA. We performed log rank analysis with baseline CXCL10 serum levels. CXCL10 nanoString data from lung tissues obtained from transplanted patients with SSc-ILD were extracted. Fifteen (Female, N = 10) patients with SSc (SSc-ILD, N = 7) were recruited for bronchoalveolar lavage (BAL) procedure. Lung fibroblasts were treated with BAL-fluid or serum from patients with SSc with or without ILD. Inflammatory/fibrotic genes were assessed. FINDINGS: Serum CXCL10 levels were higher in patients with SSc-ILD compared to SSc patients without ILD [Median (IQR):126 pg/ml (66-282.5) vs. 78.5 pg/ml (50-122), P = 0.029, 95% CI: 1.5 × 10-6 to 0.4284]. Survival analysis showed that baseline CXCL10 levels >78.5 pg/ml have a 2.74-fold increased risk of developing new onset of ILD (Log-rank: P = 0.119) on follow-up. CXCL10 levels in BAL supernatant were not different in patients with SSc-ILD compared to SSc without ILD [76.1 pg/ml (7.2-120.8) vs. 22.3 pg/ml (12.1-43.7), P = 0.24, 95% CI: -19.5 to 100]. NanoString showed that CXCL10 mRNA expression was higher in inflammatory compared to fibrotic lung tissues [4.7 (4.2-5.6) vs. 4.3 (3.6-4.7), P = 0.029]. Fibroblasts treated with SSc-ILD serum or BAL fluids overexpressed CXCL10. INTERPRETATIONS: Clinical, transcriptomic, and in vitro data showed that CXCL10 is potentially involved in early SSc-ILD. More research is needed to confirm whether CXCL10 can be classified as a prospective biomarker to detect patients with SSc at higher risk of developing new onset ILD. FUNDING: This collaborative project is co-financed by the Ministry of Economic Affairs and Climate Policy of the Netherlands utilizing the PPP-allowance made available by the Top Sector Life Sciences & Health to stimulate public-private partnerships (PPP-2019_007). Part of this study is financially supported by Sanofi Genzyme (NL8921).


Assuntos
Doenças Pulmonares Intersticiais , Escleroderma Sistêmico , Feminino , Humanos , Biomarcadores , Quimiocina CXCL10/genética , Perfilação da Expressão Gênica , Ligantes , Pulmão , Doenças Pulmonares Intersticiais/genética , Estudos Observacionais como Assunto , Estudos Retrospectivos , Escleroderma Sistêmico/complicações , Escleroderma Sistêmico/genética , Masculino
12.
Epigenetics ; 18(1): 2175522, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38016026

RESUMO

Ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) is highly expressed in smokers, but little is known about the molecular mechanism of UCHL1 in airway epithelium and its possible role in affecting extracellular matrix (ECM) remodelling in the underlying submucosa. Since cigarette smoking is a major cause of lung diseases, we studied its effect on UCHL1 expression and DNA methylation patterns in human bronchial epithelial cells, obtained after laser capture micro-dissection (LCM) or isolated from residual tracheal/main stem bronchial tissue. Targeted regulation of UCHL1 expression via CRISPR/dCas9 based-epigenetic editing was used to explore the function of UCHL1 in lung epithelium. Our results show that cigarette smoke extract (CSE) stimulated the expression of UCHL1 in vitro. The methylation status of the UCHL1 gene was negatively associated with UCHL1 transcription in LCM-obtained airway epithelium at specific sites. Treatment with a UCHL1 inhibitor showed that the TGF-ß1-induced upregulation of the ECM gene COL1A1 can be prevented by the inhibition of UCHL1 activity in cell lines. Furthermore, upon downregulation of UCHL1 by epigenetic editing using CRISPR/dCas-EZH2, mRNA expression of COL1A1 and fibronectin was reduced. In conclusion, we confirmed higher UCHL1 expression in current smokers compared to non- and ex-smokers, and induced downregulation of UCHL1 by epigenetic editing. The subsequent repression of genes encoding ECM proteins suggest a role for UCHL1 as a therapeutic target in fibrosis-related disease.


Assuntos
Metilação de DNA , Epigênese Genética , Humanos , Brônquios , Colágeno/metabolismo , Células Epiteliais , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo
13.
Sci Rep ; 13(1): 19393, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37938243

RESUMO

Abnormal deposition of extracellular matrix (ECM) in lung tissue is a characteristic of idiopathic pulmonary fibrosis (IPF). Increased collagen deposition is also accompanied by altered collagen organization. Collagen type XIV, a fibril-associated collagen, supports collagen fibril organization. Its status in IPF has not been described at the protein level yet. In this study, we utilized publicly available datasets for single-cell RNA-sequencing for characterizing collagen type XIV expression at the gene level. For protein level comparison, we applied immunohistochemical staining for collagen type XIV on lung tissue sections from IPF patients and compared it to lung tissue sections from never smoking and ex-smoking donors. Analyzing the relative amounts of collagen type XIV at the whole tissue level, as well as in parenchyma, airway wall and bronchial epithelium, we found consistently lower proportions of collagen type XIV in all lung tissue compartments across IPF samples. Our study suggests proportionally lower collagen type XIV in IPF lung tissues may have implications for the assembly of the ECM fibers potentially contributing to progression of fibrosis.


Assuntos
Fibrose Pulmonar Idiopática , Humanos , Fibrose Pulmonar Idiopática/genética , Matriz Extracelular , Colágenos Associados a Fibrilas , Pacientes , Pulmão
14.
ERJ Open Res ; 9(6)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38020574

RESUMO

Introduction: A subset of COPD patients develops advanced disease with severe airflow obstruction, hyperinflation and extensive emphysema. We propose that the pathogenesis in these patients differs from mild-moderate COPD and is reflected by bronchial gene expression. The aim of the present study was to identify a unique bronchial epithelial gene signature for severe COPD patients. Methods: We obtained RNA sequencing data from bronchial brushes from 123 ex-smokers with severe COPD, 23 with mild-moderate COPD and 23 non-COPD controls. We identified genes specific to severe COPD by comparing severe COPD to non-COPD controls, followed by removing genes that were also differentially expressed between mild-moderate COPD and non-COPD controls. Next, we performed a pathway analysis on these genes and evaluated whether this signature is retained in matched nasal brushings. Results: We identified 219 genes uniquely differentially expressed in severe COPD. Interaction network analysis identified VEGFA and FN1 as the key genes with the most interactions. Genes were involved in extracellular matrix regulation, collagen binding and the immune response. Of interest were 10 genes (VEGFA, DCN, SPARC, COL6A2, MGP, CYR61, ANXA6, LGALS1, C1QA and C1QB) directly connected to fibronectin 1 (FN1). Most of these genes were lower expressed in severe COPD and showed the same effect in nasal brushings. Conclusions: We found a unique severe COPD bronchial gene signature with key roles for VEGFA and FN1, which was retained in the upper airways. This supports the hypothesis that severe COPD, at least partly, comprises a different pathology and supports the potential for biomarker development based on nasal brushes in COPD.

15.
Am J Respir Crit Care Med ; 208(10): 1075-1087, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37708400

RESUMO

Rationale: IL-33 is a proinflammatory cytokine thought to play a role in the pathogenesis of asthma and chronic obstructive pulmonary disease (COPD). A recent clinical trial using an anti-IL-33 antibody showed a reduction in exacerbation and improved lung function in ex-smokers but not current smokers with COPD. Objectives: This study aimed to understand the effects of smoking status on IL-33. Methods: We investigated the association of smoking status with the level of gene expression of IL-33 in the airways in eight independent transcriptomic studies of lung airways. Additionally, we performed Western blot analysis and immunohistochemistry for IL-33 in lung tissue to assess protein levels. Measurements and Main Results: Across the bulk RNA-sequencing datasets, IL-33 gene expression and its signaling pathway were significantly lower in current versus former or never-smokers and increased upon smoking cessation (P < 0.05). Single-cell sequencing showed that IL-33 is predominantly expressed in resting basal epithelial cells and decreases during the differentiation process triggered by smoke exposure. We also found a higher transitioning of this cellular subpopulation into a more differentiated cell type during chronic smoking, potentially driving the reduction of IL-33. Protein analysis demonstrated lower IL-33 levels in lung tissue from current versus former smokers with COPD and a lower proportion of IL-33-positive basal cells in current versus ex-smoking controls. Conclusions: We provide strong evidence that cigarette smoke leads to an overall reduction in IL-33 expression in transcriptomic and protein level, and this may be due to the decrease in resting basal cells. Together, these findings may explain the clinical observation that a recent antibody-based anti-IL-33 treatment is more effective in former than current smokers with COPD.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Fumantes , Humanos , Interleucina-33/genética , Fumar/genética , Doença Pulmonar Obstrutiva Crônica/patologia , Perfilação da Expressão Gênica
16.
Front Med (Lausanne) ; 10: 1182368, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37621459

RESUMO

In idiopathic pulmonary fibrosis (IPF) constant epithelial micro-injury and aberrant interactions within the stromal micro-environment lead to abnormal alveolar repair and fibrosis. We hypothesized that alveolar epithelial regenerative responses in IPF are impaired due to disturbed crosstalk between epithelial cells and their stromal niche. We established organoid cultures from unfractionated suspensions and isolated EpCAM+ cells from distal lung tissue of patients with and without IPF. We observed significantly more organoids being formed from unfractionated suspensions compared to isolated EpCAM+ cell cultures, indicating the presence of supportive cells in the unfractionated suspensions. Importantly, lower organoid numbers were observed in unfractionated cultures from IPF lungs compared to non-IPF lungs. This difference was not found when comparing organoid formation from isolated EpCAM+ cells alone between IPF and non-IPF groups, suggesting that crosstalk between the supportive population and epithelial cells is impaired in lungs from IPF patients. Additionally, organoids grown from IPF lung-derived cells were larger in size compared to those from non-IPF lungs in both unfractionated and EpCAM+ cultures, indicating an intrinsic abnormality in epithelial progenitors from IPF lungs. Together, our observations suggest that dysregulated crosstalk between alveolar progenitor cells and the stromal niche affects the regenerative capacity, potentially contributing to alveolar impairment in IPF.

17.
Front Immunol ; 14: 1189257, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37409127

RESUMO

Introduction: Pulmonary arterial hypertension (PAH) and interstitial lung disease (ILD) are the leading causes of death in systemic sclerosis (SSc). Until now, no prospective biomarker to predict new onset of SSc-ILD or SSc-PAH in patients with SSc has reached clinical application. In homeostasis, the receptor for advanced glycation end products (RAGE) is expressed in lung tissue and involved in cell-matrix adhesion, proliferation and migration of alveolar epithelial cells, and remodeling of the pulmonary vasculature. Several studies have shown that sRAGE levels in serum and pulmonary tissue vary according to the type of lung-related complication. Therefore, we investigated levels of soluble RAGE (sRAGE) and its ligand high mobility group box 1 (HMGB1) in SSc and their abilities to predict SSc-related pulmonary complications. Methods: One hundred eighty-eight SSc patients were followed retrospectively for the development of ILD, PAH, and mortality for 8 years. Levels of sRAGE and HMGB1 were measured in serum by ELISA. Kaplan-Meier survival curves were performed to predict lung events and mortality and event rates were compared with a log-rank test. Multiple linear regression analysis was performed to examine the association between sRAGE and important clinical determinants. Results: At baseline, levels of sRAGE were significantly higher in SSc-PAH-patients (median 4099.0 pg/ml [936.3-6365.3], p = 0.011) and lower in SSc-ILD-patients (735.0 pg/ml [IQR 525.5-1988.5], p = 0.001) compared to SSc patients without pulmonary involvement (1444.5 pg/ml [966.8-2276.0]). Levels of HMGB1 were not different between groups. After adjusting for age, gender, ILD, chronic obstructive pulmonary disease, anti-centromere antibodies, the presence of puffy fingers or sclerodactyly, use of immunosuppression, antifibrotic therapy, or glucocorticoids, and use of vasodilators, higher sRAGE levels remained independently associated with PAH. After a median follow-up of 50 months (25-81) of patients without pulmonary involvement, baseline sRAGE levels in the highest quartile were predictive of development of PAH (log-rank p = 0.01) and of PAH-related mortality (p = 0.001). Conclusions: High systemic sRAGE at baseline might be used as a prospective biomarker for patients with SSc at high risk to develop new onset of PAH. Moreover, high sRAGE levels could predict lower survival rates due to PAH in patients with SSc.


Assuntos
Hipertensão Arterial Pulmonar , Receptor para Produtos Finais de Glicação Avançada , Escleroderma Sistêmico , Hipertensão Arterial Pulmonar/sangue , Hipertensão Arterial Pulmonar/tratamento farmacológico , Hipertensão Arterial Pulmonar/mortalidade , Hipertensão Arterial Pulmonar/patologia , Humanos , Estudos Retrospectivos , Masculino , Feminino , Pessoa de Meia-Idade , Receptor para Produtos Finais de Glicação Avançada/sangue , Escleroderma Sistêmico/complicações , Doenças Pulmonares Intersticiais/tratamento farmacológico , Doenças Pulmonares Intersticiais/patologia , Proteína HMGB1/sangue
18.
Respir Res ; 24(1): 130, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37170105

RESUMO

After more than two years the COVID-19 pandemic, that is caused by infection with the respiratory SARS-CoV-2 virus, is still ongoing. The risk to develop severe COVID-19 upon SARS-CoV-2 infection is increased in individuals with a high age, high body mass index, and who are smoking. The SARS-CoV-2 virus infects cells of the upper respiratory tract by entering these cells upon binding to the Angiotensin-converting enzyme 2 (ACE2) receptor. ACE2 is expressed in various cell types in the lung but the expression is especially high in goblet and ciliated cells. Recently, it was shown that next to its full-length isoform, ACE2 also has a short isoform. The short isoform is unable to bind SARS-CoV-2 and does not facilitate viral entry. In the current study we investigated whether active cigarette smoking increases the expression of the long or the short ACE2 isoform. We showed that in active smokers the expression of the long, active isoform, but not the short isoform of ACE2 is higher compared to never smokers. Additionally, it was shown that the expression of especially the long, active isoform of ACE2 was associated with secretory, club and goblet epithelial cells. This study increases our understanding of why current smokers are more susceptible to SARS-CoV-2 infection, in addition to the already established increased risk to develop severe COVID-19.


Assuntos
COVID-19 , Mucosa Respiratória , Fumar , Humanos , Enzima de Conversão de Angiotensina 2 , COVID-19/genética , COVID-19/imunologia , Epitélio/metabolismo , Pandemias , Peptidil Dipeptidase A , Mucosa Respiratória/metabolismo , SARS-CoV-2 , Fumar/efeitos adversos , Glicoproteína da Espícula de Coronavírus/metabolismo
19.
ERJ Open Res ; 9(3)2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37228276

RESUMO

Background: Interleukin-11 (IL-11) is linked to the pathogenesis of idiopathic pulmonary fibrosis (IPF), since IL-11 induces myofibroblast differentiation and stimulates their excessive collagen deposition in the lung. In IPF there is disrupted alveolar structural architecture, yet the effect of IL-11 on the dysregulated alveolar repair remains to be elucidated. Methods: We hypothesised that epithelial-fibroblast communication associated with lung repair is disrupted by IL-11. Thus, we studied whether IL-11 affects the repair responses of alveolar lung epithelium using mouse lung organoids and precision-cut lung slices (PCLS). Additionally, we assessed the anatomical distribution of IL-11 and IL-11 receptor (IL-11R) in human control and IPF lungs using immunohistochemistry. Results: IL-11 protein was observed in airway epithelium, macrophages and in IPF lungs, also in areas of alveolar type 2 (AT2) cell hyperplasia. IL-11R staining was predominantly present in smooth muscle and macrophages. In mouse organoid co-cultures of epithelial cells with lung fibroblasts, IL-11 decreased organoid number and reduced the fraction of Prosurfactant Protein C-expressing organoids, indicating dysfunctional regeneration initiated by epithelial progenitors. In mouse PCLS exposed to IL-11, ciliated cell markers were increased. The response of primary human fibroblasts to IL-11 on gene expression level was minimal, though bulk RNA-sequencing revealed IL-11 modulated various processes which are associated with IPF, including unfolded protein response, glycolysis and Notch signalling. Conclusions: IL-11 disrupts alveolar epithelial regeneration by inhibiting progenitor activation and suppressing the formation of mature alveolar epithelial cells. Evidence for a contribution of dysregulated fibroblast-epithelial communication to this process is limited.

20.
Am J Physiol Lung Cell Mol Physiol ; 324(6): L799-L814, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37039368

RESUMO

Extracellular matrix (ECM) remodeling has been associated with chronic lung diseases. However, information about specific age-associated differences in lung ECM is currently limited. In this study, we aimed to identify and localize age-associated ECM differences in human lungs using comprehensive transcriptomic, proteomic, and immunohistochemical analyses. Our previously identified age-associated gene expression signature of the lung was re-analyzed limiting it to an aging signature based on 270 control patients (37-80 years) and focused on the Matrisome core geneset using geneset enrichment analysis. To validate the age-associated transcriptomic differences on protein level, we compared the age-associated ECM genes (false discovery rate, FDR < 0.05) with a profile of age-associated proteins identified from a lung tissue proteomics dataset from nine control patients (49-76 years) (FDR < 0.05). Extensive immunohistochemical analysis was used to localize and semi-quantify the age-associated ECM differences in lung tissues from 62 control patients (18-82 years). Comparative analysis of transcriptomic and proteomic data identified seven ECM proteins with higher expression with age at both gene and protein levels: COL1A1, COL6A1, COL6A2, COL14A1, FBLN2, LTBP4, and LUM. With immunohistochemistry, we demonstrated higher protein levels with age for COL6A2 in whole tissue, parenchyma, airway wall, and blood vessel, for COL14A1 and LUM in bronchial epithelium, and COL1A1 in lung parenchyma. Our study revealed that higher age is associated with lung ECM remodeling, with specific differences occurring in defined regions within the lung. These differences may affect lung structure and physiology with aging and as such may increase susceptibility to developing chronic lung diseases.NEW & NOTEWORTHY We identified seven age-associated extracellular matrix (ECM) proteins, i.e., COL1A1, COL6A1, COL6A2 COL14A1, FBLN2, LTBP4, and LUM with higher transcript and protein levels in human lung tissue with age. Extensive immunohistochemical analysis revealed significant age-associated differences for COL6A2 in whole tissue, parenchyma, airway wall, and vessel, for COL14A1 and LUM in bronchial epithelium, and COL1A1 in parenchyma. Our findings lay a new foundation for the investigation of ECM differences in age-associated chronic lung diseases.


Assuntos
Pneumopatias , Proteômica , Humanos , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Adolescente , Adulto Jovem , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/genética , Pulmão/metabolismo , Pneumopatias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...